Как додуматься до решения олимпиадной задачи?
Я иногда решаю «для себя»
Вчера решил очередную такую задачу из ролика Савватеева. Честно остановил ролик перед решением, задумался и нашел решение. Расскажу скорее не о самом решении, а о том, как можно его отыскать.
Условие задачи
В задаче требуется показать, что существует действительное число $$A\in\R$$, такое что любая натуральная степень $$n$$ этого числа после округления вверх отличается по модулю от ближайшего квадрата натурального числа ровно на 2.
Анализ условия
Запишем условие задачи формально: требуется доказать, что
$$\exists A\in\R\ \forall n\in\mathbb{N}\ \exists x\in\mathbb{N}:\left|\lceil A^n\rceil-x^2\right|=2.$$(1)
Здесь потерялось условие, что число $$x^2$$ должно быть ближайшим квадратом к $$\lceil A^n\rceil$$. Но оно будет выполнено автоматически, если $$A>5$$.
Условие выглядит страшно, и непонятно, как подступиться к задаче. В математике нет стандартных приемов по работе с округлением вверх. Придется пользоваться универсальным приемом: думать.
Перепишем условие менее формально. Для каждого $$n$$ должны найтись числа $$\varepsilon\in[0,1)$$ и $$x^2$$, для которых $$A^n+\varepsilon=x^2\pm2$$. При больших $$n$$ получаем, что $$A^n\approx x^2$$.
Озарение
Теперь самое время для озарения. Оно пришло ко мне в ходе такого рассуждения. Переход от $$n$$ к $$n+1$$ в левой части сводится к домножению на $$A$$, а в правой части — к переходу от одного квадрата к другому.
Квадраты натуральных чисел расположены по определенному шаблону. Разница между соседними квадратами — это последовательность нечетных чисел. Скорее всего в правой части при переходе от одного квадрата к другому прибавляется некоторое число, возможно связанное с $$A$$.
Вспоминаем, в каком случае домножение сводится к прибавлению? Есть известный пример для золотого сечения и для рекуррентных последовательностей типа Фибоначчи. Золотое сечение $$\varphi=(1+\sqrt5)/2$$ обладает свойством $$\varphi^{n+1}=\varphi^n+\varphi^{n-1}$$. То есть домножение $$\varphi^n$$ на $$\varphi$$ эквивалентно прибавлению $$\varphi^{n-1}$$. Возможно, число $$A$$
Гипотеза
Проверим гипотезу, что золотое сечение подходит на роль числа $$A$$. Вычислим для начальных $$n$$ степени золотого сечения и посмотрим, есть ли у них квадрат, отличающийся почти на 2:
$$n$$ | $$\varphi^n$$ | Квадрат |
0 | 1 | |
1 | 1,618034 | |
2 | 2,618034 | |
3 | 4,236068 | |
4 | 6,854102 | 9 |
5 | 11,090170 | |
6 | 17,944272 | 16 |
7 | 29,034442 | |
8 | 46,978714 | 49 |
9 | 76,013156 | |
10 | 122,991869 | 121 |
11 | 199,005025 | |
12 | 321,996894 | 324 |
13 | 521,001919 | |
14 | 842,998814 | 841 |
15 | 1364,000733 | |
16 | 2206,999547 | 2209 |
Для малых $$n$$ закономерности не видно. Но начиная с $$n=4$$ у каждого второго числа находится нужный квадрат! Наше вычисление показывает, что $$\varphi^2=2,\!618034$$ — неплохой кандидат для числа $$A$$. Оно подошло бы под условие, если бы не требование того, что именно ближайший квадрат, а не некоторый, должен отличаться на 2. Действительно, $$\varphi^2$$, округленное вверх до 3, отличается от квадрата 12 на 2. Чтобы учесть это требование, можем отобрать из таблицы не каждое второе число, а каждое четвертое, и положить $$A=\varphi^4$$.
Поскольку речь зашла о золотом сечении и числах Фибоначчи, мы можем понять, откуда в условии взялось округление вверх. Известно, что для чисел Фибоначчи $$F_{n}$$ есть формула Бине:
$$F_{n}={\frac {\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}}{\sqrt {5}}}={\frac {\varphi ^{n}-(-\varphi )^{-n}}{\varphi -(-\varphi )^{-1}}}={\frac {\varphi ^{n}-(-\varphi )^{-n}}{2\varphi -1}}.$$
Для нашей задачи от нее толку мало, но она подсказывает, что мы можем добавить к иррациональному $$\varphi^n$$
Строгое доказательство
Докажем теперь, что $$\varphi^{2n}+\varphi^{-2n}$$ отличается от квадрата некоторого натурального числа на 2. Для этого рассмотрим вспомогательное число $$t_n=\varphi^{n}+(-\varphi)^{-n}$$.
Заметим, что $$(-\varphi)^{-1}=-2/(1+\sqrt{5})=(1-\sqrt{5})/2$$, как и $$\varphi$$, является решением уравнения $$y^{2}=y+1$$ и, следовательно, тоже удовлетворяет условию $$y^{n+1}=y^n+y^{n-1}$$. Итого имеем рекуррентную последовательность $$t_n=\varphi^{n}+(-\varphi)^{-n}$$, подчиняющуюся определению $$t_{n+1}=t_n+t_{n-1}$$, так как она есть сумма двух других рекуррентных последовательностей с тем же определением.
Вычислим начальные элементы последовательности $$t_n$$: $$t_0=1+1=2$$, $$t_1=(1+\sqrt{5})/2+(1-\sqrt{5})/2=1$$. По принципу математической индукции любой элемент последовательности $$t_n$$ — также целое число.
Возведем элемент последовательности $$t_n$$ в квадрат:
$$t^2_n=\left(\varphi^{n}+\left({-1\over\varphi}\right)^n\right)^2=\varphi^{2n}+{1\over\varphi^{2n}}+2(-1)^n.$$(2)
Таким образом, возведение $$\varphi^2$$ в степень $$n$$ и округление вверх дает целое число $$\varphi^{2n}+1/{\varphi^{2n}}$$, отличающееся от квадрата натурального числа $$|t_n|=|\varphi^{n}+(-\varphi)^{-n}|$$ ровно на 2.
Сравнение решения с авторским
Мое решение вроде бы завязано на золотое сечение и на его свойства. Но на самом деле используется только одно свойство: золотое сечение есть решение уравнения $$y^{2}=y+1$$. Сумма степеней корней этого уравнения порождает целочисленную последовательность. Есть и другие уравнения с тем же свойством. Корни по модулю должны быть взаимно обратными, чтобы сработало равенство наподобие (2). Можно было взять действительные корни любого уравнения $$y^{2}=ky\pm1$$ с целым $$k\neq\pm2$$.
Савватеев использовал свойства симметрических многочленов, чтобы показать целочисленность суммы степеней корней. Мой способ через математическую индукцию и рекуррентные последовательности тоже годится.
Оставьте свой комментарий